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Toric varieties

I A toric variety X is a normal algebraic variety with an action of a
torus T ' (C∗)n such that X contains an open orbit isomorphic to
T .

I Let Λ ' Zn be a lattice; a fan Σ is a finite set of strictly convex
polyhedral cones in the space ΛR = Λ⊗Z R such that:

(i) If σ ∈ Σ and if τ is a face of σ, then τ ∈ Σ ;
(ii) If σ, τ ∈ Σ, then σ ∩ τ is a common face of σ and τ .

I There is a one to one correspondence between fans and toric
varieties; if Σ is a fan, we denote XΣ the associated toric variety. In
this talk we considered uniquely complete toric variety (i.e. the fan
cover the whole space ΛR)
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Roots system

Let V be an euclidean space, a roots system R is a finite set of non zero
vectors which generate V and such that:

(i) if c ∈ R, α ∈ R and cα ∈ R, then c ± 1;

(ii) for all α, let sα be the orthogonal reflection in the hyperplane α⊥,
then sα(R) = R;

(iii) for all α, β ∈ R, sα(β)− β is an integer multiple of α.
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Some roots system in dimension 2

(a) A2 (b) B2
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Objects associated to roots system R
I the Weyl group which is the group generated by the set
{sα : α ∈ R};

I the dual roots system R∨ =
{
α∨ = 2α

(α,α) : α ∈ R
}

.

I the lattice generated by the roots: ΛR (the roots lattice);

I the weights lattice ΛP = {v ∈ V : ∀α (v , α∨) ∈ Z} ⊃ ΛR ;

I Weyl chambers which are the closure of connected components of

V \
⋃
α∈R

α⊥;

I to a choice of a Weyl chamber D (the dominant chamber), we can
define:

(i) The set of fundamental weights: {ω1, . . . , ωn}
(D =

∑
i R+ ωi , and (ωi )i is a basis of the weights lattice); the

weights in D are called dominant weights;
(ii) The set of simple roots: S = {α1, . . . , αn} (basis of the roots

lattice).
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Some roots system in dimension 2

α2

ω1

ω2

α1

(c) A2

α1

α2

ω1

ω2

(d) B2
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Fan associated to a subset L of the set of simple roots S .
(construction of Klyachko and Vokrensenskii ’84)

I We suppose that R is irreducible (and of dimension n).

I To each subset L ⊂ S we can define WL =< sα : α ∈ L > (so
WS = W );

I σR,L =
⋃

w∈WL

wD ⊂ (ΛP)R

I Except in the trivial case L = S the cone σR,L is strictly convex. We
suppose now that L 6= S .

I ΣR,L is the fan such that the cones of maximal dimension are:

ΣR,L(n) = {wσR,L : w ∈W }.

I Let XR,L be the the toric variety associated to the fan ΣR,L.
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Exemples in dimension 2

α2

ω1

ω2

α1

(e) R = A2, L = ∅

α2

ω1

ω2

α1

(f) R = A2, L = {α1}
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The link with generic torus orbit in flag varieties

I To R corresponds a simple algebraic group G ; to L corresponds a
parabolic subgroup P ⊂ G (G/P is projective); the maximal torus
T of G acts on G/P.

Theorem (Dabrowski ’96)
If an orbit T .x is generic then T .x is a normal variety and the fan of the
toric variety T .x is equal to ΣR∨,L.
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List of varieties XR,L which are Q-Gorenstein Fano

I An algebraic variety X is Q-Gorenstein Fano if the canonical divisor
KX is Q-Cartier and if −KX is ample.

I If X is Q-Gorenstein Fano, the Gorenstein index of X is :
min{j > 0, jKX is Cartier}.

I Q-Gorenstein Fano of index 1: Gorenstein Fano

I Gorenstein Fano+ smooth: Fano

I The irreducible roots systems are classified by Dynkin diagrams: a
graph whose vertices are elements of S and edges depend on the
angle between the two roots.

I π/2
1 2

2π/3

I
1 2

3π/4
1 2

5π/6
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List of varieties XR,L which are Q–Gorenstein Fano (Rittatore-M.).
: elements in L
type(R) rank Dynkin(R), L and J Geometry ϕnL

∈ (ΛR∨ )Q

An

n ≥ 1
1 2 n

J

Fano (n + 1)ω1

n ≥ 2
1 2 n − 1 n

J J J J

GF ω1 + ωn

n odd, n ≥ 3
1 n−1

2
n − 1

J J

GF 2ω n+1
2

n even, n ≥ 4
1 n

2
n
2

+ 1 n

J J

Fano (n + 1)

(
ω n

2
+ ω n

2
+1

)

Bn n ≥ 2
1 2 n − 1 n

J

GF ω∨1

1 2 n − 1 n

J J

GF ω∨2

1 2 n − 1 n

J

GF, n even ω∨n

Q–GF, n odd

Cn
n ≥ 3

1 2 n − 1 n

J

GF ω∨1

1 2 n − 1 n

J

Fano 2ω∨n
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type(R) rank Dynkin(R), L and J Geometry ϕnL
∈ (ΛR∨ )Q

Dn n ≥ 4 1 2

n − 1

n

J

J

Gorenstein Fano 2ω1

1 2

n − 1

n

J

J

J

Gorenstein Fano ω2

E6 6
1

2

3 4 5 6

J J

Gorenstein Fano ω2

F4 4 1 2 3 4

J

Q–Gorenstein Fano 1
2
ω∨1

1 2 3 4

J

Gorenstein Fano ω∨4

G2 2 1 2

J

Fano ω∨2

1 2

J

Q–Gorenstein Fano 1
3
ω∨1

This list includes the Fano cases which have been classified by
Klyachko and Vokrensenskii (’84).
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The beginning of the proof
I Let XΣ be a toric variety of dimension n, then we define:

I Σ(d) := {σ ∈ Σ : σ of dimension d}
I To each cone ρ ∈ Σ(1):

(i) Dρ: the T -stable codimension one variety;
(ii) uρ: the generator of ρ ∩ Λ.

I −KXΣ
=

∑
ρ∈Σ(1) Dρ.

I For each σ ∈ Σ we define: Prim(σ) = ∪ρ⊂σuρ.

I There is an equivalence between:

(i) XΣ is Q–Gorenstein Fano;
(ii) for every cone σ ∈ Σ(n), there exists ϕσ ∈ Λ∨Q such that
〈ϕσ, v〉 = −1 for v ∈ Prim(σ) and 〈ϕσ,w〉 > −1 for every
w ∈ Prim(Σ) \ Prim(σ).

I If X is Q–Gorenstein Fano, its Gorenstein index is equal to
min{j > 0 : ∀σ ∈ Σ(n) jϕσ(Λ) ∈ Z}.
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Example in for R = B2

α1

α2

ω1

ω2

(g) L = ∅, Not Q–GF

α1

α2

ω1

ω2

(h) L = {α1}, Fano

α1

α2

ω1

ω2

(i) L = {α2}, GF
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More details
I Let nR,L be a outward normal (for the scalar product) of the face

Conv (Prim(σR,L)).

Proposition
The variety XR,L is Gorenstein Fano if and only if nR,L belongs to the
interior of σR,L.

I To compute nR,L we have to describe the set of essential
fundamental weights for σR,L i.e. the fundamental weights which
belongs to Prim(σR,L).

I If λ is a dominant weight such that λ =
∑
i∈R\L

aiωi with ai > 0 then

the normal fan of ConvW .λ is ΣR,L

I The essential fundamental weights correspond to faces of
codimension 1 of the Weyl polytope ConvW .λ which belongs to D.

I These faces have been described in a work of Khare ’17.



Which generic torus orbits in flag varieties are Q–Gorenstein Fano?

Associated Reflexive Polytopes

I Let P ∈ (Λ)R be a polytope containing 0 and with vertices in Λ; we
define

P∨ = {v ∈ (Λ∨)R : ∀u ∈ P 〈u, v〉 ≥ −1}.

I If all vertices of P∨ belong to Λ∨, P is called reflexive.

I To each Gorenstein Fano variety corresponds a pair of reflexive
polytopes.

I We compute pairs corresponding to varieties XR,L which are
Gorenstein Fano.

I On the one hand we have the polytope:
Conv (W {ωi : ωi essential }) ⊂ (ΛP)R

I On the other hand the Weyl polytope: Conv (WϕnL) ⊂ (ΛR∨)R,
where ϕnL ∈ (ΛP)∨ = ΛR∨ is the normal ϕnL ∈ (ΛR∨)R of
Conv (Prim(σ)) such that ϕnL(ω) = 1 for ω essential.
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J: fundamental weights which are essential : elements in L
type(R) rank Dynkin(R), L and J Geometry ϕnL

∈ (ΛR∨ )Q

An

n ≥ 1
1 2 n

J

Smooth (n + 1)ω1

n ≥ 2
1 2 n − 1 n

J J J J

GF ω1 + ωn

n odd, n ≥ 3
1 n−1

2
n − 1

J J

GF 2ω n+1
2

n even, n ≥ 4
1 n

2
n
2

+ 1 n

J J

Smooth (n + 1)

(
ω n

2
+ ω n

2
+1

)

Bn n ≥ 2
1 2 n − 1 n

J

GF ω∨1

1 2 n − 1 n

J J

GF ω∨2

1 2 n − 1 n

J

GF, n even ω∨n

Q–GF, n odd

Cn
n ≥ 3

1 2 n − 1 n

J

GF ω∨1

1 2 n − 1 n

J

Smooth 2ω∨n
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type(G) rank Dynkin(R), L and J Geometry ϕnL
∈ (ΛR∨ )Q

Dn n ≥ 4 1 2

n − 1

n

J

J

Gorenstein Fano 2ω1

1 2

n − 1

n

J

J

J

Gorenstein Fano ω2

E6 6
1

2

3 4 5 6

J J

Gorenstein Fano ω2

F4 4 1 2 3 4

J

Q–Gorenstein Fano 1
2
ω∨1

1 2 3 4

J

Gorenstein Fano ω∨4

G2 2 1 2

J

Smooth, Fano ω∨2

1 2

J

Q–Gorenstein Fano 1
3
ω∨1
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Exemples of reflexive polytopes in dimension 2

α1

ω1

ω2

α2

(j) R = A2, L = {1}
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Exemples of reflexive polytopes in dimension 2

α1

α2

ω2

ω1

(k) R = A2, L = ∅
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Examples of reflexive polytopes in dimension 2

α1

α2

ω1

ω2

(l) R = B2, L = {2}
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Thank You!


