# Which generic torus orbits in flag varieties are $\mathbb{Q}$ -Gorenstein Fano?

#### Alvaro Rittatore, Pierre-Louis Montagard

Universidad de la republica, Montevideo & IMAG, Montpellier

24 septembre 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Toric varieties

- A toric variety X is a normal algebraic variety with an action of a torus T ≃ (C\*)<sup>n</sup> such that X contains an open orbit isomorphic to T.
- Let  $\Lambda \simeq \mathbb{Z}^n$  be a lattice; a fan  $\Sigma$  is a finite set of strictly convex polyhedral cones in the space  $\Lambda_{\mathbb{R}} = \Lambda \otimes_{\mathbb{Z}} \mathbb{R}$  such that:

(i) If  $\sigma \in \Sigma$  and if  $\tau$  is a face of  $\sigma$ , then  $\tau \in \Sigma$ ; (ii) If  $\sigma, \tau \in \Sigma$ , then  $\sigma \cap \tau$  is a common face of  $\sigma$  and  $\tau$ .

There is a one to one correspondence between fans and toric varieties; if Σ is a fan, we denote X<sub>Σ</sub> the associated toric variety. In this talk we considered uniquely complete toric variety (*i.e.* the fan cover the whole space Λ<sub>R</sub>)

#### Roots system

Let V be an euclidean space, a roots system R is a finite set of non zero vectors which generate V and such that:

(i) if 
$$c \in \mathbb{R}$$
,  $\alpha \in R$  and  $c\alpha \in R$ , then  $c \pm 1$ ;

(ii) for all  $\alpha$ , let  $s_{\alpha}$  be the orthogonal reflection in the hyperplane  $\alpha^{\perp}$ , then  $s_{\alpha}(R) = R$ ;

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

(iii) for all  $\alpha, \beta \in R$ ,  $s_{\alpha}(\beta) - \beta$  is an integer multiple of  $\beta$ .

#### Some roots system in dimension 2



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

#### Objects associated to roots system R

- the Weyl group which is the group generated by the set {s<sub>α</sub> : α ∈ R};
- ▶ the dual roots system  $R^{\vee} = \left\{ \alpha^{\vee} = \frac{2\alpha}{(\alpha,\alpha)} : \alpha \in R \right\}.$
- the lattice generated by the roots: Λ<sub>R</sub> (the roots lattice);
- ► the weights lattice  $\Lambda_P = \{ v \in V : \forall \alpha \ (v, \alpha^{\vee}) \in \mathbb{Z} \} \supset \Lambda_R;$
- Weyl chambers which are the closure of connected components of  $V \setminus \bigcup_{\alpha \in R} \alpha^{\perp}$ ;
- to a choice of a Weyl chamber D (the dominant chamber), we can define:
  - (i) The set of fundamental weights: {ω<sub>1</sub>,..., ω<sub>n</sub>}
     (D = ∑<sub>i</sub> ℝ<sup>+</sup> ω<sub>i</sub>, and (ω<sub>i</sub>)<sub>i</sub> is a basis of the weights lattice); the weights in D are called dominant weights;
  - (ii) The set of simple roots:  $S = \{\alpha_1, \dots, \alpha_n\}$  (basis of the roots lattice).

#### Some roots system in dimension 2



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Fan associated to a subset L of the set of simple roots S. (construction of Klyachko and Vokrensenskii '84)

- We suppose that R is irreducible (and of dimension n).
- To each subset L ⊂ S we can define W<sub>L</sub> =< s<sub>α</sub> : α ∈ L > (so W<sub>S</sub> = W);

$$\bullet \ \sigma_{R,L} = \bigcup_{w \in W_L} w \mathcal{D} \subset (\Lambda_P)_{\mathbb{R}}$$

- Except in the trivial case L = S the cone σ<sub>R,L</sub> is strictly convex. We suppose now that L ≠ S.
- $\triangleright$   $\Sigma_{R,L}$  is the fan such that the cones of maximal dimension are:

$$\Sigma_{R,L}(n) = \{ w\sigma_{R,L} : w \in W \}.$$

• Let  $X_{R,L}$  be the the toric variety associated to the fan  $\Sigma_{R,L}$ .

# Exemples in dimension 2



# The link with generic torus orbit in flag varieties

To R corresponds a simple algebraic group G ; to L corresponds a parabolic subgroup P ⊂ G (G/P is projective); the maximal torus T of G acts on G/P.

#### Theorem (Dabrowski '96)

If an orbit T.x is generic then  $\overline{T.x}$  is a normal variety and the fan of the toric variety  $\overline{T.x}$  is equal to  $\Sigma_{R^{\vee},L}$ .

#### List of varieties $X_{R,L}$ which are $\mathbb{Q}$ -Gorenstein Fano

- An algebraic variety X is Q-Gorenstein Fano if the canonical divisor K<sub>X</sub> is Q-Cartier and if -K<sub>X</sub> is ample.
- If X is Q-Gorenstein Fano, the Gorenstein index of X is : min{j > 0, jK<sub>X</sub> is Cartier}.
- Q-Gorenstein Fano of index 1: Gorenstein Fano
- Gorenstein Fano+ smooth: Fano
- The irreducible roots systems are classified by Dynkin diagrams: a graph whose vertices are elements of S and edges depend on the angle between the two roots.

• • 
$$\pi/2$$
 •  $\pi/2$  2 $\pi/3$ 

$$\blacktriangleright \underset{1}{\longrightarrow} \frac{3\pi}{4} \qquad \underset{1}{\longrightarrow} \frac{5\pi}{6}$$

List of varieties  $X_{R,L}$  which are  $\mathbb{Q}$ -Gorenstein Fano (Rittatore-M.). •: elements in L

| type(R) | rank                     | Dynkin(R), L and J                                                                                   | Geometry                       | $\varphi_{n_L} \in (\Lambda_{R^{\vee}})_{\mathbb{Q}}$           |    |                   |
|---------|--------------------------|------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|----|-------------------|
|         | $n \ge 1$                | J<br>0<br>1 2 n                                                                                      | Fano                           | $(n+1)\omega_1$                                                 |    |                   |
| An      | $n \ge 2$                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | GF                             | $\omega_1 + \omega_n$                                           |    |                   |
|         | $n \text{ odd}, n \ge 3$ | $ \begin{array}{c} J \\ \bullet \\ 1 \\ \hline  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $ | GF                             | $2\omega \frac{n+1}{2}$                                         |    |                   |
|         | $n$ even, $n \ge 4$      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                | Fano                           | $(n+1)\left(\omega_{\frac{n}{2}}+\omega_{\frac{n}{2}+1}\right)$ |    |                   |
|         |                          | $\begin{array}{c} & J \\ 0 \\ 1 \\ 2 \\ n-1 \\ n \end{array}$                                        | GF                             | $\omega_1^{\vee}$                                               |    |                   |
| Bn      | $n \ge 2$                | $n \ge 2$                                                                                            | $n \ge 2$                      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$           | GF | $\omega_2^{\vee}$ |
|         |                          | J<br>1 $2$ $n-1$ $n$                                                                                 | GF, <i>n</i> even              | $\omega_n^{\vee}$                                               |    |                   |
|         |                          |                                                                                                      | $\mathbb{Q}$ –GF, <i>n</i> odd |                                                                 |    |                   |
| Cn      |                          | $\begin{array}{c} & J \\ \hline 1 & 2 & n-1 & n \end{array}$                                         | GF                             | $\omega_1^{\vee}$                                               |    |                   |
|         | $n \ge 3$                | $ \begin{array}{c} J \\ \bullet \\ 1 \\ 2 \\ n-1 \\ n \end{array} $                                  | Fano                           | $2\omega_n^{\vee}$                                              |    |                   |

| type(R)        | rank  | Dynkin( <i>R</i> ), <i>L</i> and <i>J</i>                                                                           | Geometry          | $\varphi_{n_L} \in (\Lambda_{R^{\vee}})_{\mathbb{Q}}$ |
|----------------|-------|---------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------|
| Dn             | n ≥ 4 | $ \begin{array}{c} & J \\ & n-1 \\ \\ 0 \\ 1 \\ 2 \\ \end{array} \right) \begin{array}{c} J \\ n \\ n \end{array} $ | Gorenstein Fano   | $2\omega_1$                                           |
|                |       | $ \begin{array}{c} J \\ J \\ \bullet \\ 1 \\ 2 \end{array} $                                                        | Gorenstein Fano   | $\omega_2$                                            |
| E <sub>6</sub> | 6     | $\begin{array}{c} & & & \\ J & & & J \\ \hline 1 & 3 & 4 & 5 & 6 \end{array}$                                       | Gorenstein Fano   | ω2                                                    |
| F <sub>4</sub> | 4     |                                                                                                                     | Q–Gorenstein Fano | $\frac{1}{2}\omega_1^{\vee}$                          |
|                |       |                                                                                                                     | Gorenstein Fano   | $\omega_4^{\vee}$                                     |
| G2             | 2     |                                                                                                                     | Fano              | $\omega_2^{\vee}$                                     |
|                |       |                                                                                                                     | Q–Gorenstein Fano | $\frac{1}{3}\omega_1^{\vee}$                          |

This list includes the Fano cases which have been classified by Klyachko and Vokrensenskii ('84).

# The beginning of the proof

- Let  $X_{\Sigma}$  be a toric variety of dimension *n*, then we define:
- $\Sigma(d) := \{ \sigma \in \Sigma : \sigma \text{ of dimension } d \}$
- To each cone  $\rho \in \Sigma(1)$ :

(i)  $D_{\rho}$ : the *T*-stable codimension one variety;

(ii)  $u_{\rho}$ : the generator of  $\rho \cap \Lambda$ .

$$\blacktriangleright -K_{X_{\Sigma}} = \sum_{\rho \in \Sigma(1)} D_{\rho}.$$

For each  $\sigma \in \Sigma$  we define:  $Prim(\sigma) = \bigcup_{\rho \subset \sigma} u_{\rho}$ .

#### There is an equivalence between:

- (i)  $X_{\Sigma}$  is  $\mathbb{Q}$ -Gorenstein Fano;
- (ii) for every cone  $\sigma \in \Sigma(n)$ , there exists  $\varphi_{\sigma} \in \Lambda_{\mathbb{Q}}^{\vee}$  such that  $\langle \varphi_{\sigma}, v \rangle = -1$  for  $v \in \operatorname{Prim}(\sigma)$  and  $\langle \varphi_{\sigma}, w \rangle > -1$  for every  $w \in \operatorname{Prim}(\Sigma) \setminus \operatorname{Prim}(\sigma)$ .
- If X is Q-Gorenstein Fano, its Gorenstein index is equal to min{j > 0 : ∀σ ∈ Σ(n) jφ<sub>σ</sub>(Λ) ∈ Z}.

#### Example in for $R = B_2$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

# More details

Let n<sub>R,L</sub> be a outward normal (for the scalar product) of the face Conv (Prim(σ<sub>R,L</sub>)).

#### Proposition

The variety  $X_{R,L}$  is Gorenstein Fano if and only if  $n_{R,L}$  belongs to the interior of  $\sigma_{R,L}$ .

► To compute  $n_{R,L}$  we have to describe the set of essential fundamental weights for  $\sigma_{R,L}$  i.e. the fundamental weights which belongs to  $Prim(\sigma_{R,L})$ .

If λ is a dominant weight such that λ = ∑<sub>i∈R\L</sub> a<sub>i</sub>ω<sub>i</sub> with a<sub>i</sub> > 0 then the normal fan of Conv W.λ is Σ<sub>R.L</sub>

- The essential fundamental weights correspond to faces of codimension 1 of the Weyl polytope Conv W.λ which belongs to D.
- ► These faces have been described in a work of Khare '17.

#### Associated Reflexive Polytopes

Let P ∈ (Λ)<sub>ℝ</sub> be a polytope containing 0 and with vertices in Λ; we define

$$\mathcal{P}^{\vee} = \{ \mathbf{v} \in (\Lambda^{\vee})_{\mathbb{R}} : \forall u \in \mathcal{P} \ \langle u, v \rangle \geq -1 \}.$$

- If all vertices of  $\mathcal{P}^{\vee}$  belong to  $\Lambda^{\vee}$ ,  $\mathcal{P}$  is called reflexive.
- To each Gorenstein Fano variety corresponds a pair of reflexive polytopes.
- We compute pairs corresponding to varieties X<sub>R,L</sub> which are Gorenstein Fano.
- On the one hand we have the polytope: Conv (W{ω<sub>i</sub> : ω<sub>i</sub> essential }) ⊂ (Λ<sub>P</sub>)<sub>ℝ</sub>
- On the other hand the Weyl polytope: Conv (Wφ<sub>n<sub>L</sub></sub>) ⊂ (Λ<sub>R<sup>∨</sup></sub>)<sub>ℝ</sub>, where φ<sub>n<sub>L</sub></sub> ∈ (Λ<sub>P</sub>)<sup>∨</sup> = Λ<sub>R<sup>∨</sup></sub> is the normal φ<sub>n<sub>L</sub></sub> ∈ (Λ<sub>R<sup>∨</sup></sub>)<sub>ℝ</sub> of Conv (Prim(σ)) such that φ<sub>n<sub>L</sub></sub>(ω) = 1 for ω essential.

| J: | fundamental | weights | which | are | essential | •: | elements | in | L |
|----|-------------|---------|-------|-----|-----------|----|----------|----|---|
|----|-------------|---------|-------|-----|-----------|----|----------|----|---|

| type(R) | rank                     | Dynkin(R), L and J                                                                                                                       | Geometry                       | $\varphi_{n_L} \in (\Lambda_{R^{\vee}})_{\mathbb{Q}}$                                              |
|---------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------|
|         | $n \ge 1$                | о ј<br>1 2 п                                                                                                                             | Smooth                         | $(n+1)\omega_1$                                                                                    |
| An      | $n \ge 2$                | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | GF                             | $\omega_1 + \omega_n$                                                                              |
|         | $n \text{ odd}, n \ge 3$ | $ \begin{array}{c} J \\ \bullet \\ 1 \\ \hline  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $                                     | GF                             | $2\omega \frac{n+1}{2}$                                                                            |
|         | $n$ even, $n \ge 4$      | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                    | Smooth                         | $(n+1)\left(\omega_{\frac{n}{2}}+\omega_{\frac{n}{2}+1}\right)$                                    |
| Bn      | $n \ge 2$                | $0 \xrightarrow{\qquad \qquad } n-1 \xrightarrow{\qquad \qquad } n$                                                                      | GF                             | $\omega_1^{\vee}$                                                                                  |
|         |                          | $n \ge 2$                                                                                                                                | $n \ge 2$                      | $ \begin{array}{c} J \\ \bullet \\ 1 \\ 2 \\ \end{array} \xrightarrow{J} \\ n-1 \\ n \end{array} $ |
|         |                          | J                                                                                                                                        | GF, <i>n</i> even              | $\omega_n^{\vee}$                                                                                  |
|         |                          |                                                                                                                                          | $\mathbb{Q}$ –GF, <i>n</i> odd |                                                                                                    |
| Cn      |                          | $0 \qquad \qquad$ | GF                             | $\omega_1^{\vee}$                                                                                  |
|         | $n \ge 3$                |                                                                                                                                          | Smooth                         | $2\omega_n^{\vee}$                                                                                 |

(ロ)、(型)、(E)、(E)、 E) の(()

| type(G)        | rank         | Dynkin( <i>R</i> ), <i>L</i> and <i>J</i>                            | Geometry          | $\varphi_{n_L} \in (\Lambda_{R^{\vee}})_{\mathbb{Q}}$ |
|----------------|--------------|----------------------------------------------------------------------|-------------------|-------------------------------------------------------|
| Dn             | <i>n</i> ≥ 4 | J<br>n - 1<br>J<br>n                                                 | Gorenstein Fano   | $2\omega_1$                                           |
|                |              | $ \begin{array}{c} J \\                                   $          | Gorenstein Fano   | ω2                                                    |
| E <sub>6</sub> | 6            | $\begin{array}{c} & & & \\ J & & & \\ 1 & 3 & 4 & 5 & 6 \end{array}$ | Gorenstein Fano   | ω2                                                    |
| F4             | 4            |                                                                      | Q–Gorenstein Fano | $\frac{1}{2}\omega_1^{\vee}$                          |
|                |              |                                                                      | Gorenstein Fano   | $\omega_4^{\vee}$                                     |
| G <sub>2</sub> | 2            |                                                                      | Smooth, Fano      | $\omega_2^{\vee}$                                     |
|                |              |                                                                      | Q–Gorenstein Fano | $\frac{1}{3}\omega_1^{\vee}$                          |

# Exemples of reflexive polytopes in dimension 2



# Exemples of reflexive polytopes in dimension 2



◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

# Exemples of reflexive polytopes in dimension 2



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

# Thank You!